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LETTER TO THE EDITOR 
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t Department of Physia, Aristotle Univenitv of Thessaloniki, GR-54006 Thessaloniki, 
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Received 4 May 1993 

Abstract. A generalized deformed algebra SU42), characterized by a structure function 
Q, is obtained. The usual SU(2) and SUq(2) algebras correspond to specific choices of the 
structure function Q. The action of the generators of the algebra on the relevant basis 
vectors, as well as the eigenvalues of the Casimir operator, are easily obtained. Possible 
applications in improving phenomenological models are discussed. 

Quantum algebras [Id] (also called quantum groups) are nonlinear deformations of 
the corresponding Lie algebras, to which they reduce when the deformation para- 
meter q is set equal to one. They have recently found several applications in physics, 
especially after the introduction of the q-deformed harmonic oscillator [5,6]. The 
SU,(2) symmetry, in particular, has been widely used for the description of rotational 
spectra of deformed nuclei [7-91, superdeformed nuclei [lo], and diatomic molecules 
[ll-141, as well as for the description of the electromagnetic transition probabilities 
connecting these levels [U]. The introduction of generalized deformed oscillators [16] 
has led to more applications in physics, since it gives the possibility of constructing 
okillators behaving like a physical system, the Morse oscillator [17] for example. 
Although several generalized deformed oscillators, as well as unification schemes for 
them, have been introduced (see [18] for a list of references), attempts at generalizing 
the SU,(2) symmetry only recently began appearing [19-211. A generalized version of 
the deformed SU(2) can be useful in improving [9] the agreement of phenomenologi- 
cal models to experimental data. 

In the present work we construct a generalized deformed SU(2) algebra, charac- 
terized by a structure function @. The usual SU(2) and SU,(2) algebras are obtained 
for specific forms of the structure function, but additional forms are possible. The 
present method allows for the determination of the action of the generators on the 
basis vectors and of the eigenvalues of the Casimir operator in a simple way. Its 
possible usefulness in physical applications is also discussed. 

We start the construction of the algebra in a very general way, adding the 
necessary restrictions as we proceed. Consider a Hilbert space V,  consisting of the 
tensor sum of the subspaces V,, i.e. 

where the subspaces V, are unitary subspaces of dimension 21f 1 and basis vectors 
11, m) with I integer or half-integer (in what follows we will denote the set of integers 
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and half-integers by I,)  and m taking values from the set SI= {-1, -I+ 1 ,  . . . , I -  1,o. 
The basis vectors are orthonormal 

(l',m'JI,m)=6&,,,,,. 

and cover V 

: action of which on the 

l d ,  

J+l l ,  m)=A(l, m)ll, m+ 1) m6Sl I E Il 

J+ 11, 0 = 0 

J-  =(J+)' 

1: In V we consider the operators Jo, J + ,  
given by 

ITS is 

(2) 

(3) 

(4) 

(5)  
where A(1,  m) is a real entire function defined for me [ - I ,  0,1 E [0, m),  satisfying the 
equations 

A(1, I) =O 

A(1,  -l-l)=O. 

It is clear that of interest are the values of A ( [ ,  m) with l e  I,, meS,-{&. 
From equations (2)-(5) we immediately obtain 

I=D m=-1 

- I  

J -  =E E A( l ,m)~ l ,m) ( l ,m+l~ .  
1=0 m=-1 

Using equations (8)-(10) one can easily prove that 

[Jo,  J+ 1 = J +  

[Jo, J - ]  = -J- 

JgJ+=J+(Jo+l)"  

JgJ-=J-(Jo-  1)". 

Then for every entire function A one has 

A(Jo)J+ = J s l ( J o  + 1) 

A(Jo)J-=J-A(Jo-  1) .  
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From (9) and (10) one easily obtains 

One can define an operator J such that 

Clearly one has 

and 

(A(J,J0))’IL m)= (A(L 4 ) ’ I L  m). (21) 

J+J-=(A(J,Jo-l))’ (22) 

J- J ,  = (A(./, Jo))’. (23) 

Then (17) and (18) can be written as 

For the commutator of J ,  with J -  one has from (17) and (18) that 

- 1  

[ J + ,  J-l=E ((AV, m -  1))’- (A([,  m))’>15 m)(l, MI (24) 
1=0 m=-I 

while from (22) and (23) one finds 

[J+ . J-]=(A(J,  3 0 -  l))*- (A(J,JO))’. (25) 

In what follows we wish to restrict ourselves to operators Jo, J,, J -  which close an 
algebra by themselves, i.e. without involving J .  Equations (11) and (12) already do 
not involve J ,  but (25) does. We wish to restrict ourselves to algebras for which the 
right-hand side (RHS) of (25) is a function of Jo only. We assume that this function of Jo 
can be written in the form B(J,) -B(Jo-  l), i.e. we require that 

[ J + ,  J - ] =  B(J0) -E(Jo-l). (26) 

(For sufficient conditions under which a function of lo can be written in the form 
B(Jo)-B(Jo-1) see [E].) By equating the RHS of (25) and (26) and acting on the 
basis vector Il, m) we find that for every m E SI and 1 E Il  the following condition should 
be satisfied 

(A@, m))’- (A(1, m- 1))’= B(m - 1) -B(m). (27) 
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This condition is satisfied if (A($ m))’ is separable into the difference of a function of 1 
and a function of m, i.e. 

(A(k 4)’= C(0 - B(m) meS, 1 E I,. (28) 

C(r) = B O  (29) 

E([ )  =B( - l -  1). (30) 

B([)  =@([(I + 1)). (31) 

From (6), (7) and (28) one easily sees that 

and 

The last equation implies that E([ )  is of the form 

Thiscanbeprovenasfollows: in(30)onecanputl=j-$.ThenB(j-+)=B(-j-f). 
Thus the function G(j)  = B( j -  +) is an even function of j ,  i.e. G(]) = G(-]). For every 
even function G(1) one can find a function Fsuch that G(]) = F(j’), which implies that 
B(I)=F(IZ+!+a). As a result there is a function @ ( x ) = F ( x + a ) ,  for which (31) is 
valid. (The inverse also holds: for every function of the form given in (31), equation 
(30) is satisfied, as one can trivially see.) 

From (28), (29) and (31) one then Jinds that 
(A(1, m))’=@(Z(I+1))-@(m(m+l)) mcS, I E I , .  (32) 

This can be written as 

MJ,  Jo))’=@(J(J+ l))-@(-’o(Jo+ 1)) (33) 

F(I, m) = 0 (34) 

because of the following general proposition: 
m ES,. 1~ I&F(J, J o )  =O 

where F(1, m) is any entire function. The proof of the proposition is simple. From 
F(Z,m)=O one has F(l,m)lZ,m)=O and then F(J,J,)Il,m)=O for every meS, and 
~ E I , ,  which implies that F(J, J,)=O. The inverse is also proved through the same 
steps. 

From (33) it is clear that @(x) must be an increasing function for x>O. Thus the 
restricted as described above algebra satisfies the relations 

[Jo ,  J+1 =J+ [Jo, J - ] =  -J- (35) 
JJ+ = @(J(J + 1)) - @(Jo(J, + 1)) (36) 
J+J- = @(J(J+ 1)) - @(Jo(Jo - 1)) (37) 

[J+, J - I = ~ ~ J o ( J o + l ) ) - @ P ( J o ( J o ~ ~ 1 ) )  (38) 
where @(x) is any increasing entire function defined for x>  -$. This algebra is a 
generalization of SU(2), characterized by the function 0. Therefore we are going to 
use for this the symbol SU&). 

Using (35)-(38) one can easily verify that the Casimir operator (which commutes 
with all the generators of the algebra) is 

C = J J +  +@(Jo(Jo+ 1)) =J+J- +@(Jo(Jo- 1)). (39) 

C=@(J(J+ 1)). (40) 

From (36) one then has 
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From this equation it is clear that the eigenvalues of the Casimir operator in the basis 
IZ,m)areCJ(I(I+l)),withZ=O,~, l,;, . . . .Theactionofthevariousoperatorsonthe 
basis vectors is summarized by 

JolLm)=mll,m) (41) 
J+Il, m)=-\/CJ(l(Z+ 1)) -CJ(m(m+ 1))11, m+ 1) (42) 
J - I ~ ,  m)= -\/cJ(~(z+ 1)) - @(m(m - 1))11, m - 1) (43) 

clZ,m)=CJ(Z(l+1))1Z,m). (44) 
We have therefore constructed an algebra SU,(2), which is a generalization of the 

SU(2) algebra characterized by the structure function CJ. A few comments are now in 
place: 

(i) The usual SU(2) algebra is obtained for 
CJ(x(x+l))=x(x+l) 

as one can see from equations (35)-(44). 
(ii) The quantum algebra SU9(2), with commutation relations 

[ J o , J , ] = f J +  [J+,  J - l=PJolq  (45) 

One can be persuaded that the function CJ(x(x + 1)) given in (46) is really a function of 
the variable x(x + 1) (a fact that is not immediately obvious) by having a look at the 
Taylor expansions given in [SI (loa) and (106). 

(iii) In [19] the following formalism is used 

[ J + ,  J-I = N o )  C= J U ,  + h(Jo) (47) 

f(Jo)=h(Jo)-h(Jo- 1) (48) 

and the condition 

is found to hold. Similar formalisms have been used in [20, 211. These results 
correspond to 

W o ) = C J ( J o ( J o +  1)) fVo) CJ(Jo(Jo + 1)) -CJ(Jo(Jo- 1)) 
which automatically satisfy the condition (48). In the present method the extra results 
of (42)-(44) are obtained at no toil. 

(iv) It is clear that the RHS of (38) is an odd function of Jo. This imposes an extra 
restriction onf(Jo) of the previous formalism (equation (47)), while it is automatically 
satisfied in the case of SU9(2), as one can easily see in (45). 

(v) In [9] it has been argued that the Hamiltonian 

E(J)=a[-\/ l+ 6J(J+ 1) - 11 (49) 
gives better agreement to rotational nuclear spectra than the one coming from the 
SU9(2) symmetry [7, SI. Using the present technique one can construct an SU&) 
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algebra giving the spectrum of (49) exactly. This algebra is characterized by the 
structure function 

@(J(J+ 1)) = aIVl+ bJ(J+ 1) - 11. 

It is of interest to check if this choice of structure function also improves the 
agreement between theory and experiment in the case of the electromagnetic 
transition probabilities connecting these energy levels. In order to study this problem, 
one has to construct the relevant generalized Clebsch-Gordan coefficients [15]. Work 
in this direction is in progress. 

One of the authors (DB) is grateful to the Greek Ministry of Research and 
Technology for support. 
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